Course Specifications	
Programme(s) on which the course is given:	Physics & Laser
Major or Minor element of program	Physics
Department offering the program	Physics
Department offering the course	Physics
Academic year / Level	third
Date of specification approval	2012

A- Basic Information

Title	Laser application (1)	Code: L3310
Credit Hours	3 h	Lecture:3h
Tutorial: 00	Practicals:00	Total: 3h

B- Professional Information

<u>1 – Overall Aims of Course</u>

basic principles of laser Biomedical applications of lasers through giving an

Introduction to tissue optics : Biological medium:

Introduction to techniques for filtering

out multiply scattered light (Tradeoff between depth of imaging and resolution), Optical

coherence tomography (Basic principle, instrumentations and applications),

Laser Material Processing (LMP)

Laser Material Interaction: Laser power coupling,

Interaction phenomena, Significance

of coupling and interaction phenomena in laser material processing.Lasers for LMP :Solid State Nd:YAG

Laser,CO2 laser, Diode laser, Fiber Laser,Comparison & Economics, Laser safety.

Laser Material Processing: Laser cutting, drilling, welding, surface hardening, surface

alloying, surface cladding, metal forming, and laser rapid prototyping: their Principles, process

characteristics, processing parameters, advantages & disadvantages, Industrial applications.

2 – Intended Learning Outcomes of Course (ILOs)
a Knowledge and Understanding:
After completing the course the student will be able to
a1- explain the general knowledge about
Biomedical applications of lasers
a2- Illustrate Laser Material Interaction: Laser
power coupling, Interaction
a3- display knowledge about Laser Material
Interaction: Laser power, coupling, Interaction
phenomena, Significance
of coupling and interaction phenomena in laser
material
processing.Lasers for LMP :Solid State Nd:YAG
Laser,CO2
laser, Diode laser, Fiber Laser, Comparison &
Economics
phenomena, Significance

b-Intellectual Skills

b1- knowledge about the new ideas in laser applications

b2- scientific reports about some points in laser applications

c-Professional and Practical Skills

C1-how to use a laser in different fields

d-General and Transferable Skills

d1- using computer and internet

<u>3- Contents</u>

Торіс	No. of	Lectu	Tut
	hours	re	oria
			l/Pr
			acti
			cal
Biomedical applications	3	1	0
of lasers			

Introduction to techniques for filtering	3	2	0
coherence tomography (Basic principle, instrumentations and applications),	3	3	0
Laser Material Processing (LMP)	3	4	0
Laser Material Interaction	3	6	0
Laser power coupling	3	7	0
Laser cutting, drilling, welding, surface hardening, surface	3	8	0

4- Teaching and Learning Methods

4.1-Lecture

4.2- discussion

<u>5- Student Assessment Methods</u>

5.1 oral to assess understanding

5.2-written exams to assess investigation, and derivations.

5.3 report to assess scientific review.

Assessment Schedule

Assessment 1 sheet exam Week 8&16 (mid &final term). Assessment 2 practical exams week 8&16 (mid &final term). Assessment 3 oral exams Week every week Assessment 4 reaserch projects Week final

Weighting of Assessments

%60Oral Examination. %%%10Semester Work %%%10100Total	20	Mid-Term Examina Final-term Examina	%
% 10 Semester Work % 10			
Semester Work % 10	Oral Examination.		
% 10		%	10
		Semester Work	
100 Total		%	10
%	100	Total	0/

<u>6- List of References</u>

6.1- "laser and nonlinear optics"

6.2- Majumder, S. K, Uppal, A, and Gupta,

P.K, Cun. Sci., 1996,70,833-836.

6.3-. Majumder, S. K., and Gupta, P. K., in"Optical Diagnosrics of Biological Fluids

III'', (ed. Priezzhev, A V.), Proc. Soc.Phoro-Opt. Instrum. Eng., 1998, 3252, pp. 169-178.

6.4-. Majumder, S. K., and Gupta, P. K, Lasers LifeSci., 2000, 9, 143-152

7- Facilities Required for Teaching and Learning

Data show – lab top computer – pens – blackboard - ...etc.

Course Coordinator: Dr.Entsar El Masde Head of Department: Prof.Dr. Sana Maize Date: / /